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Abstract
Starting from a quantum Langevin equation (QLE) of a charged particle coupled
to a heat bath in the presence of an external magnetic field, we present a fully
dynamical calculation of the susceptibility tensor. In a different ‘equilibrium
approach’, we further evaluate the position autocorrelation function by using the
Gibbs ensemble. This quantity is shown to be related to the imaginary part of the
dynamical susceptibility, thereby validating the fluctuation–dissipation theorem
in the context of dissipative diamagnetism. Finally, we present an overview of
coherence-to-decoherence transition in the realm of dissipative diamagnetism
at zero temperature. The analysis underscores the importance of the details of
the relevant physical quantity, as far as coherence-to-decoherence transition is
concerned.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The problem of a quantum charged particle in the presence of a magnetic field is an old and
important one [1]. When Landau gave the theory of diamagnetism, a major breakthrough in
solid-state physics was made possible [2, 3]. The physics of Landau levels is of great interest
in the quantum Hall effect [4] and high-temperature superconductivity [5]. In the present
paper we address the issue of what happens when we combine the Landau problem with the
Drude transport treatment, which naturally brings in the phenomenon of environment-induced
dynamics [6].

The consequences of coupling of a system to its environment are threefold. First,
energy may be transferred irreversibly from the system to the environment in the manner
of dissipation [7–9]. Second, the spontaneous fluctuations in systems in thermodynamic
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equilibrium, maintained by its coupling to the environment, govern the response of the system
degrees of freedom to weak, external stimuli [10, 11]. Finally, the entanglement between the
system and the environment degrees of freedom destroys the coherent superposition of quantum
states, leading to decoherence [12].

We discuss all three above-mentioned effects in the context of Landau diamagnetism,
which is inherently and intrinsically quantum in nature. For the purpose of investigating
fluctuation, dissipation and decoherence in what we call Landau–Drude diamagnetism [13],
it is convenient to use the formulation given by Ford et al [14, 15], following the classical
treatment due to Zwanzig [16]. Starting from the Feynman–Vernon model, in which a particle
moving in an arbitrary potential is assumed to be linearly coupled to a collection of quantum
harmonic oscillators [17], these authors derived a quantum Langevin equation (QLE). We use
this QLE as the basis of our further discussion, in what may be referred to as the Einstein
approach to statistical physics [18].

At this stage it is important to indicate in what ways our present work is an advancement
on existing results in the literature, in order to put matters into perspective. Ford et al [19]
had solved the problem of a charged oscillator in a harmonic potential well and linearly
coupled to a heat bath using the generalized QLE. This solution was further extended by Li
et al [15], but in the presence of a magnetic field. From the asymptotic expression, which
is obtained in the limit of time t approaching infinity, these authors derived the influence
of dissipation on the diamagnetic moment. While the diamagnetism is the first moment
of an underlying quantum distribution function, we go beyond this in the present paper by
treating the fluctuations in the asymptotic state, embodied in the generalized susceptibility
tensor. We further connect the latter, derived from a ‘nonequilibrium’ QLE approach, to
the position autocorrelation function calculated from the ‘equilibrium’ Gibbsian ensemble
form of the Euclidean action for the Feynmann–Vernon model. This connection allows us to
establish a relation between the position autocorrelation function and the imaginary part of the
susceptibility—a statement of the fluctuation–dissipation theorem—and thus unify equilibrium
and nonequilibrium statistical mechanics, in the context of dissipative diamagnetism. This is a
new result.

The destruction of quantum coherence by environment-induced dissipation is of central
interest in atomic physics [20], condensed matter physics [21], as well as chemical and
biological reactions [22]. We discuss this environment-induced decoherence in the context
of dissipative diamagnetism. Landau diamagnetism has its origin in coherent circular motion
of the electron in a plane normal to the magnetic field. This coherent motion is disturbed
due to interaction with environmental degrees of freedom, e.g. defects, phonons, etc. We
illustrate how the system transitions from the coherent ‘Landau regime’ to the decoherent
‘Bohr-Van Leeuwen regime’ [23, 24]. Egger et al [25] discussed the environment-induced
destruction of quantum coherence for the damped harmonic oscillator and for the dissipative
two-state system and have established the dependence of this transition on the initial state of
preparation. Here we have extended this study of Egger et al [25] and have shown that the
coherent–decoherent transition depends on the particular dynamical quantity (e.g. correlation
function, occupation probability, etc) under consideration for the case of Landau–Drude
diamagnetism too.

This paper is organized as follows. In section 2 we discuss our model Hamiltonian and the
corresponding QLE. In section 3 we calculate the generalized susceptibility tensor. Section 4
deals with the position autocorrelation function and its relation to the susceptibility, thus
establishing the fluctuation–dissipation theorem in the context of dissipative diamagnetism. In
section 5 we study the coherence-to-decoherence transition. Finally, we summarize our results
and present a few concluding remarks in section 6.
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2. Model, QLE and Einstein approach

We start with the Feynman–Vernon Hamiltonian for a charged particle in a magnetic field, �B,
coupled to an environment of quantum harmonic oscillators [17]. In order to incorporate the
contribution of the boundary electrons, we introduce a confining harmonic trap, described by
the second term on the right-hand side of equation (1) below. The effect of this term can be
removed at the end of the calculation by setting ω0 = 0. This trick is due originally to Darwin
in the context of the equilibrium partition function [26]. Thus the underlying Hamiltonian can
be written as

H = 1

2m

(
�p − e

c
�A
)2

+ 1

2
mω2

0 �q2 +
∑

j

[
1

2m j
�p j

2 + 1

2
m jω

2
j (�q j − �q

)2
]
, (1)

where �p and �q are the momentum and position operators of the particle, and �A is the vector
potential. Now, following Ford et al [14, 15], one can write the QLE emanating from
equation (1) as [13]

m �̈q +
∫ t

−∞
dt ′γ (t − t ′) �̇q(t ′) + mω2

0 �q − e

c
( �̇q × �B) = �F(t), (2)

where the auto-correlation and the commutator of �F(t) are given by

〈{Fα(t), Fβ(t ′)}〉 = δαβ

2

π

∫ ∞

0
Re[γ̃ (ω + i0+)]h̄ω coth

(
h̄ω

2kBT

)
cos{ω(t − t ′)} dω, (3)

〈[Fα(t), Fβ (t ′)]〉 = δαβ

2

iπ

∫ ∞

0
Re[γ̃ (ω + i0+)]h̄ω sin{ω(t − t ′)} dω, (4)

where γ̃ (s) = ∫∞
0 dt exp(ist)γ (t) (Im s > 0).

At this stage we introduce the nomenclature of Ohmic dissipation as well as non-Ohmic
dissipation. Defining the spectral density of the environmental degrees of freedom as J (ω) =
π
2

∑N
j=1 m jω

3
jδ(ω−ω j ), we can rewrite the memory kernel γ (t) in terms of the spectral density

as

γ (t) = �(t)
2

mπ

∫ ∞

0
dω

J (ω)

ω
cos(ωt), (5)

where �(t) is the Heaviside step function. Often in condensed-matter physics, we deal with
physical situations which can be described by such a Caldeira–Leggett model, as given in
equation (1), consisting of only one or a few relevant dynamical variables in contact with a
huge environment which is assumed to be a collection of harmonic oscillators [9, 27, 28]. It
has been shown by Chang and Chakravarty that a Fermionic heat bath comprising electron–
hole excitations near the Fermi surface, as appropriate for a metal, can indeed be represented
by Bosonic operators, which are just the second quantized form of the harmonic oscillator
variables of the Caldeira–Leggett model, especially when Ohmic dissipation is assumed [29].
In the Ohmic case, damping is frequency-independent and the spectral density J (ω) = mγω.
The memory kernel γ (t − t ′) is thus replaced by mγ δ(t − t ′), so that Re[γ̃ (ω + i0+)] reduces
to mγ , a constant. In this limit we get an ordinary Langevin equation. It is interesting to note
that the underlying stochastic process is still non-Markovian, even though there is no memory.
On the other hand, the non-Ohmic case can be realized when the bath consists of phonons,
as appropriate, for instance, in the tunnelling of an atom in the bulk [9]. Recently, Louis and
Sethna [30] have shown that the case of tunnelling between surfaces corresponds to ‘Ohmic’
dissipation, in contrast to the bulk case, where the dissipation is of the ‘super-Ohmic’ variety. In
the non-Ohmic case, for a bath comprising acoustic phonons, the spectral density is defined as
J (ω) = mγ̃ (ω), where γ̃ (ω) = γω3 [31]. The damping kernel γ̃ (ω) then brings in memory-
friction effects.
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3. Generalized susceptibility tensor

In this section we consider the linear response of the position coordinate to an external force
�f (t), assumed to be small. By imagining the force to have been switched on at time t = −∞,

all transient effects can be ignored and the non-transient response can be captured by the
frequency-dependent generalized susceptibility. The corresponding QLE now reads

m �̈q +
∫ t

−∞
dt ′γ (t − t ′) �̇q(t ′) + mω2

0 �q − e

c
( �̇q × �B) = �F(t) + �f (t). (6)

Introducing

Z̃i(ω) =
∫ ∞

0
dteiωt Zi(t) (i = 1, 2, 3, 4; Z1 = γ, Z2 = qβ, Z3 = Fα, Z4 = fα), (7)

where εαβρ is the Levi-Civita symbol, and α, β, ρ are the three spatial directions (i.e. α, β, ρ =
x, y, z), we can rewrite equation (6) in a Fourier-transformed form:[

(m(ω2
0 − ω2) − iωγ̃ (ω))δαβ + iω

e

c
εαβρ Bρ

]
q̃β(ω) = F̃α(ω) + f̃α(ω). (8)

Equation (8) can be recast as the inverse of equation (6) in the Fourier space:

Yαβ(ω)q̃β(ω) = [F̃α(ω) + f̃α(ω)], (9)

with

Y (ω) =
⎛
⎝

�(ω) iω e
c Bz −iω e

c By

−iω e
c Bz �(ω) iω e

c Bx

iω e
c By −iω e

c Bx �(ω)

⎞
⎠ , (10)

where �(ω) = m(ω2
0 − ω2) − iωγ̃ (ω). From linear response theory, one can write [32]

qα(t) =
∫ t

−∞
dsχαβ(t − s)(Fβ(s) + fβ(s)), (11)

where χαβ is the generalized susceptibility tensor. In Fourier-transformed form, equation (11)
becomes

q̃α(ω) = χαβ(ω)[F̃β(ω) + f̃β(ω)]. (12)

Comparing equation (12) with equation (9), the generalized susceptibility can be evaluated
from the following equation:

χαβ = [Y −1(ω)]αβ. (13)

Clearly

χ(ω) = 1

det[Y (ω)]

(
χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

)
, (14)

where

det[Y (ω)] = �(ω)

[
�2(ω) −

(
ω

e

c

)2

�B2

]
;

χii = �2(ω) −
(

ω
e

c

)2

B2
i , (i = x, y, z);

χxy = χ∗
yx = −

(
ω

e

c

)2

Bx By − iω
e

c
Bz�(ω);

χxz = χ∗
zx = −

(
ω

e

c

)2

Bx Bz + iω
e

c
By�(ω);

χyz = χ∗
zy = −

(
ω

e

c

)2

By Bz − iω
e

c
Bα�(ω),

(15)
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where (∗) denotes the complex conjugate of the corresponding variable. The expression is
simplified when the magnetic field is taken along the z-axis, thus

χ(ω) = 1

det[Y (ω)]

⎛
⎝

�2(ω) −iω e
c �(ω)B 0

iω e
c �(ω)B �2(ω) 0

0 0 �2(ω) − (ω e
c )

2 B2

⎞
⎠ . (16)

For this particular case, the real part of the susceptibility is

χ ′
xx = χ ′

yy = 1

2m2

[
(ω2

0 − ω2 + ωωc/2)

(ω2 − ω2
0 + ωωc)2 + ω2 γ̃ 2(ω)

m2

+ (ω2
0 − ω2 − ωωc/2)

(ω2 − ω2
0 − ωωc)2 + ω2 γ̃ 2(ω)

m2

]
, (17)

and the imaginary part is

χ ′′
xx = χ ′′

yy = γ̃ (ω)ω

2m2

[
1

(ω2 − ω2
0 + ωωc)2 + ω2 γ̃ 2(ω)

m2

+ 1

(ω2 − ω2
0 − ωωc)2 + ω2 γ̃ 2(ω)

m2

]
, (18)

where the cyclotron frequency ωc = eB
mc . For the Ohmic dissipation case the susceptibility has

four poles at

ω = ±ω̃+ =
⎡
⎣ωc + iγ

2
±
√

4ω2
0 + ω2

c − γ 2 + 2iωcγ

2

⎤
⎦

ω = ±ω̃− =
⎡
⎣−ωc + iγ

2
±
√

4ω2
0 + ω2

c − γ 2 − 2iωcγ

2

⎤
⎦ .

(19)

On the other hand, for the non-Ohmic case these poles cannot be evaluated analytically. The
numerical results for the Ohmic dissipation as well as the non-Ohmic dissipation cases are
presented below.

In figure 1 we plot the dissipative part of the the x component of susceptibility, i.e. χ ′′
xx (ω)

versus ω for different values of ωc and γ , in accordance with equation (17). We note that
χ ′′

xx (ω) is odd in ω for the Ohmic dissipation case and has Lorentzian line shapes for finite
damping values, with peaks centred at the poles. For the non-Ohmic case, χ ′′

xx (ω) is even in ω.
It is evident from figure 1(b) that, for finite but weak damping, one can obtain all four peaks
for the Ohmic dissipation case, whereas for high damping only two peaks are obtained. The
same is true for the non-Ohmic case (figure 1(d)). The only difference is that the magnitude of
the peak height is higher for the non-Ohmic case and is always positive. Also, the peak width
increases with an increase in γ for both the Ohmic and non-Ohmic cases. On the other hand,
the width of the peak decreases with an increase in ωc, as is expected on physical grounds. In
the non-Ohmic case, the number of peaks also increases from two to four with an increase in
ωc, whereas it remains two for the Ohmic case with an increase in ωc, if γ is kept large. Thus,
dissipative effects are stronger for the Ohmic case.

In figure 2 we plot the reactive or the real part of the x component of susceptibility (χ ′
xx (ω))

versus ω for different values of ωc and γ , in accordance with equation (17). χ ′
xx (ω) is odd in

ω for the Ohmic as well as the non-Ohmic cases. The spreading of the peaks increases, but
the peak height decreases with a decrease in ωc for the Ohmic case. On the other hand, both
the spreading and peak height decrease with a decrease in ωc for the non-Ohmic case. But
the features are the same with the variation in γ for both the Ohmic and non-Ohmic cases—the
peak height increases but the spreading decreases with an decrease in γ . In addition, the number
of peaks increases from one to two with a decrease in γ in the Ohmic as well as non-Ohmic
cases.

The z component of the susceptibility tensor is, of course, the same as that of a damped
harmonic oscillator, because it has no relation to the cyclotron frequency ωc.
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Figure 1. The imaginary part of susceptibility χxx : (a) Ohmic dissipation case (J (ω) ∼ ω)

for two ωc values; (b) Ohmic dissipation case for two γ values; (c) non-Ohmic dissipation case
(J (ω) ∼ ω3) for two ωc values; (d) non-Ohmic dissipation case for two γ values.
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Figure 2. The real part of susceptibility χxx : (a) Ohmic dissipation case (J (ω) ∼ ω) for two ωc

values; (b) Ohmic dissipation case for two γ values; (c) non-Ohmic dissipation case (J (ω) ∼ ω3)

for two ωc values; (d) non-Ohmic dissipation case for two γ values.

4. Fluctuation–dissipation relationship: Gibbs approach

In section 3 we calculated the susceptibility as the asymptotic (i.e. t → ∞) response from a
fully time-dependent formulation of the underlying QLE. Because detailed balance relations
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(namely equations (3) and (4)) are built-in within the QLE, as the heat bath is assumed to
be in thermal equilibrium at a fixed temperature T , the asymptotic response is expected to
be related to the equilibrium properties of the system. This expectation is at the heart of
what Kadanoff calls the Einstein approach to statistical mechanics [18] in which equilibrium
answers are sought from the asymptotic limit of time-dependent results. It is then natural to
ask whether the response obtained from the Einstein approach can be related to spontaneous
or equilibrium fluctuations, which can be independently calculated from the standard Gibbsian
formulation of equilibrium statistical mechanics. If we can establish this relation, it will not
only be tantamount to establishing the fluctuation–dissipation theorem for the phenomenon at
hand, but also to demonstrating the equivalence of the Einstein and the Gibbs approaches to
statistical mechanics [33].

With this preamble, the position autocorrelation function in equilibrium is defined as

C(t) = 〈�x(t) · �x(0)〉 = Tr (�x(t) · �x(0)ρβ), (20)

where ρβ is the equilibrium density matrix of the full system and �x is the two-dimensional
position vector in the x–y plane. We determine C(t) by first calculating its imaginary time
version, starting from the Euclidean action of the system as described by equation (1):

SE[�x] =
∫ h̄β

0
dτ
(m

2
�̇x2 + m

2
ω2

0 �x2 + imωc( �̇x × �x)z

)

+ 1

2m

∫ h̄β

0
dτ

∫ h̄β

0
dσ γ̃ (τ − σ)�x(τ ) · �x(σ ) +

∫ h̄β

0
dτ �f (τ ) · �x(τ ), (21)

where the first term (within round brackets) takes care of the system part, the second term
accounts for the coupling to the environment, and the third term corresponds to the interaction
with an external force, in imaginary time. This helps us to determine the correlation function
by variation with respect to this force [34, 35]:

〈�x(τ ) · �x(σ )〉 = h̄2Tr

(
δ

δ �f (τ )

δ

δ �f (σ )
ρβ

)
�f =0

. (22)

It is sufficient to restrict ourselves to the classical path for the calculation of the autocorrelation
function [34, 35]. Thus the Fourier representation of the classical Euclidean action
becomes [33, 34]

SE
cl = − 1

2mh̄β

+∞∑
n=−∞

[
1

ν2
n + γ̃ (|νn |)νn

m + ω2
0 − iωcνn

+ 1

ν2
n + γ̃ (|νn |)νn

m + ω2
0 + iωcνn

]

×
∫ h̄β

0
dτ

∫ h̄β

0
dσ �f (τ ) �f (σ ) exp(iνn(τ − σ)), (23)

where νn = 2πn
h̄β

are the so-called Matsubara frequencies. Since the force appears only
through the action in the exponent of the equilibrium density matrix, we can easily evaluate
the functional derivatives according to equation (21) and obtain the position autocorrelation
function in imaginary time:

C(τ ) = 1

mβ

+∞∑
n=−∞

[
1

ν2
n + γ̃ (|νn |)νn

m + ω2
0 − iωcνn

+ 1

ν2
n + γ̃ (|νn |)νn

m + ω2
0 + iωcνn

]
exp(iνnτ ).

(24)

The real-time correlation function cannot be obtained by simply replacing τ by i t , because
for negative times the sum does not converge. The idea is to express the sum in equation (23)
as a contour integral in the complex frequency plane and look for a function which is well
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C
+

Reω

Imω

C
-
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(b)(a)

Figure 3. The analytic continuation of the imaginary time correlation function to real times by
using the contours depicted in (a) and (b) to obtain equations (24) and (25) respectively.

behaved at infinity, but has poles at ω = iνn [36]. This requirement is fulfilled by the term:
h̄β

1−exp(−h̄βω)
. Now, doing the integration along the contour shown in figures 3(a) and (b) and

after some algebra, we find the real-time correlation function as

C(t) = h̄

πm2

∫ +∞

−∞
dω

[
γ̃ (ω)ω

(ω2 − ω2
0 − ωωc)2 + γ̃ 2(ω)ω2

m2

+ γ̃ (ω)ω

(ω2 − ω2
0 + ωωc)2 + γ̃ 2(ω)ω2

m2

]

× e(−iωt)

1 − e(−h̄βω)
. (25)

It is easy to show from equation (24) that

C̃(ω) = 2h̄

1 − exp(−βh̄ω)
χ ′′

xx (ω). (26)

Equation (26) represents the fluctuation–dissipation theorem in the context of dissipative
Landau diamagnetism. The position autocorrelation function describes the spontaneous
fluctuations of the system, while the imaginary part of the dynamic susceptibility χ ′′

xx
determines the energy dissipation in the system due to work done by an external weak force.

5. Coherence–decoherence transition

In this section our discussion is focused on the destruction of quantum coherence by
environment-induced dissipation in the context of Landau diamagnetism. Two questions are
relevant: (i) can we quantify the criterion for crossover from coherent to decoherent dynamics?;
(ii) Is this criterion universal? As far as some model systems are concerned, the answer to (i)
is in the affirmative [25]. Regarding the question (ii), there seems to be no universality in the
criterion of crossover. As a matter of fact, the value of the crossover parameter depends on
the particular quantity under consideration and its initial preparation. Thus, quantum memory
effects play a crucial role as the system makes a transition from the coherent to the decoherent
regime. To clarify this issue, we focus on dissipative diamagnetism and consider its T = 0
behaviour, wherein quantum coherence is the most prominent. Here we follow the discussion
of Egger et al [25].
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We start with the QLE for dissipative Landau diamagnetism subject to Ohmic damping.
The motion in the x–y plane can be expressed in the compact form:

Z̈ + γ̄ Ż + ω2
0 Z = θ(t)

m
, (27)

where Z = x + iy, γ̄ = γ + iωc, and θ = Fx + iFy . Thus, the time dependence of the
corresponding classical quantity (a la Ehrenfest) is governed by the following equation:

〈Z̈ 〉 + γ̄ 〈Ż〉 + ω2
0〈Z〉 = θ(t)

m
, (28)

where the angular brackets represent statistical averages over the ground-state properties
(T = 0), i.e. the expectation values. As discussed earlier, the response to an external force
is characterized by the generalized susceptibility χosc(t) [32]:

〈Z(t)〉 = 1

mω0

∫ t

−∞
dt ′χosc(t − t ′)θ(t ′). (29)

From equations (27) and (28), we obtain the Fourier transform of χosc(t) as

χosc(ω) = ω0

ω2
0 − ω2 − iγ̄ ω

. (30)

On the other hand, using the fluctuation–dissipation theorem [32], χosc(ω) can be related to
the spectral function Sosc(ω), which in turn determines the equilibrium correlation function
Cosc(ω). The functional relationship which holds at T = 0 is as follows:

Im χosc(ω) = ωSosc(ω) = ω

|ω|Cosc(ω), (31)

where Cosc(t) = Re〈Z(t)Z(0)〉. Using equations (29) and (30), we obtain the spectral function

Sosc(ω) = γω0

(ω2
0 − ω2 + ωωc)2 + γ 2ω2

. (32)

The quantity Sosc(ω) can be used as a signature for the transition from coherence to

decoherence: Sosc(ω) has two inelastic peaks at ωm = ω0
2

[−κ2 ±
√

4 − κ2
1 + κ2

2

]
for weak

damping, where κ1 and κ2 are dimensionless parameters defined by κ1 = γ

ω0
and κ2 = ωc

ω0
.

These two quantities are employed as the crossover parameters to quantify the coherence-to-
decoherence transition. Defining κ̄2 = κ2

1 + κ2
2 , we can say that, below the critical coherent

criterion (defined below, cf equation (34)), i.e. κ̄2 < κ̄2
c , the function Sosc(ω) exhibits two

inelastic peaks which are evident from figure 4, in which we plot Sosc(ω) versus ω for different
κ1 and κ2. At the critical coherent criterion (cf equation (34)) the two peaks merge into a single
quasi-elastic peak. The latter persists for κ̄2 > κ̄2

c . Since the quasi-elastic peak is centred near
ω 
 0, we can make a small-ω expansion of Sosc(ω):

Sosc(ω) 
 κ1χ
2
0

[
1 − κ2χ0ω + (2 − κ2

1 − κ2
2 )χ2

0 ω2 + O(ω3)
]
, (33)

where χ0 = 1
ω0

. The critical line is determined by inspecting the sign of the curvature of

Sosc(ω). The latter is positive (implying coherence) if d2 Sosc(ω)

dω2 > 0, or

κ̄2 = κ2
1 + κ2

2 < 2. (34)

But the curvature changes sign at the critical line:

κ̄2
c = κ2

1 + κ2
2 = 2, (35)

and hence the system goes to the decoherent region when

κ̄2 = κ2
1 + κ2

2 > 2. (36)
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Figure 4. Spectral function Sosc(ω) versus ω with Ohmic dissipation for dissipative Landau
diamagnetism for different parameter values.

It is illustrative to compare this behaviour with that of the damped harmonic oscillator which
was discussed by Egger et al [25]. From figures (4) and (5) one notes that, for the damped
oscillator case, Sosc(ω) has two inelastic peaks of equal height for weak damping. As the one-
parameter damping strength increases, these two peaks approach each other and, at the critical
damping strength (αc), the two peaks merge into a single quasi-elastic peak at ω = 0 which
persists for α > αc. On the other hand, for dissipative diamagnetism, the coherent–decoherent
transition is to be examined in a two-parameter plane, defined by κ1 and κ2. One obtains two
inelastic peaks which are not of equal height for low values of κ1 and κ2, because the peaks are
not symmetric on either side of ω = 0. As one increases κ1 and κ2, the peak height of the small
peak decreases and eventually vanishes at the critical line to yield a single peak which is not at
ω = 0, but near ω = 0. Above the critical line, the single quasi-elastic peak persists.

We turn next to a different criterion for quantifying the transition from coherence to
decoherence, which is based on the quantity Posc(t), defined as follows:

Posc(t) = 〈Z(t)〉
Z0

. (37)

We are interested in the relaxation of the expectation value 〈Z(t)〉 starting from a non-
equilibrium initial state. Applying the force F(t) = mω2

0 Z0 for t < 0, the initial condition
〈Z(0)〉 = Z0 is prepared and the corresponding dynamical quantity Posc(t) is computed, after
switching off the force F(t), at t = 0. Following the damped quantum harmonic oscillator
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Figure 5. Spectral function Sosc(ω) versus ω with Ohmic dissipation for a damped harmonic
oscilltor for different parameter values.

case [25], we may now write

Posc(t) = Re

[
cos(�̄t − φ̄) exp(− γ̄ t

2 )

cos(φ̄)

]
, (38)

where

�̄ =
√

ω2
0 − γ̄ 2

4
= �′ + i�′′

φ̄ = Re

[
tan−1

(
γ̄

2�̄

)]
.

(39)

Defining a = (ω2
0 + ω2

c
4 − γ 2

4 ) and b = γωc

2 ,

�′ = 1√
2

√
a +

√
a2 + b2,

�′′ = 1√
2

√√
a2 + b2 − a,

φ̄ = tan−1(X),

X = γ�′ + �′′ωc

2(�′2 + �′′ωc)
,

(40)
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we find

Posc(t) =
[

cos(�′t − φ̄) cos(�′′t) cos(ωct
2 ) − sin(�′t − φ̄) sin(�′′t) sin(ωct

2 )

cos(φ̄)

]
exp

(
−γ t

2

)
.

(41)

The signature of coherence is now damped-oscillatory behaviour if b2 > 0 and a2 + b2 > 0.
Thus the important inequality condition for the system to be coherent is:

(1 − κ2
1 + κ2

2 )2 + (κ1κ2)
2

4
> 0. (42)

The system crosses over to relaxational (decoherent) behaviour at the critical line(
1 − κ2

1

4
+ κ2

2

4

)2

+ (κ1κ2)
2

4
= 0, (43)

which is clearly different from the criterion mentioned above (cf equation (34)). Thus the
criterion for crossover from coherence to decoherence depends on the specific physical quantity
considered. This conclusion is identical to the cases of damped quantum harmonic oscillator
as well as the spin-Boson model [25].

6. Summary and conclusions

Here we have analysed an exact treatment of the Feynman–Vernon model of a charged
Brownian particle in a magnetic field in the quantum dissipative regime. Starting from the
QLE, we have derived the generalized susceptibility tensor, and have discussed its real and
imaginary parts for the particular case when the magnetic field �B is along the z-axis. Following
the Gibbs ensemble approach, we have calculated the position autocorrelation function that
measures the spontaneous fluctuations of the system degrees of freedom due to coupling
with the environment. The latter has been shown to be related to the imaginary part of the
susceptibility that measures the energy dissipation of the system due to irreversible energy
transfer between the system and the environment. The aforesaid treatment then exemplifies
the fluctuation–dissipation theorem in the context of dissipative diamagnetism as well as
establishes the equivalence of the Einstein and the Gibbs approaches to statistical mechanics
for the case at hand. Environment-induced decoherence is an important issue in mesoscopic
systems and quantum information processes. We have discussed this in the context of
dissipative diamagnetism and have argued that the transition from the Landau to the Bohr-Van
Leeuwen regime can indeed be viewed as a coherence-to-decoherence transition. Further, it has
been demonstrated that the initial preparation of a dissipative quantum system leads to abrupt
changes regarding the criterion for coherent-to-decoherent transition. As in glassy systems
characterized by hysteretic behaviour, quantum systems also exhibit memory of their initial
state of preparation.

In conclusion, we have presented a unified treatment of threefold response, i.e. fluctuation,
dissipation and decoherence of a system, due to its coupling with the environment in
the context of the contemporarily important topic of dissipative diamagnetism. We have
established the equivalence of the equilibrium and non-equilibrium statistical physics for
a phenomena like Landau–Drude diamagnetism, which is inherently quantum and strongly
dependent on boundary effects. Finally, we have demonstrated that the coherent-to-incoherent
transition depends to a large degree on the particular dynamical quantity under consideration
(e.g. correlation function, occupation probability, etc), as well as initial conditions of
preparation. Our derived results should be of some interest in the presently active area of
mesoscopic structures.
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